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Abstract

A temporal analysis of the number and duration of exceedences of high- and low-flow thresholds was conducted to determine

the number of years required to detect a level shift using data from Virginia, North Carolina, and South Carolina. Two methods

were used—ordinary least squares assuming a known error variance and generalized least squares without a known error

variance. Using ordinary least squares, the mean number of years required to detect a one standard deviation level shift in

measures of low-flow variability was 57.2 (28.6 on either side of the break), compared to 40.0 years for measures of high-flow

variability. These means become 57.6 and 41.6 when generalized least squares is used. No significant relations between years

and elevation or drainage area were detected (PO0.05). Cluster analysis did not suggest geographic patterns in years related to

physiography or major hydrologic regions. Referring to the number of observations required to detect a one standard deviation

shift as ‘characterizing’ the variability, it appears that at least 20 years of record on either side of a shift may be necessary to

adequately characterize high-flow variability. A longer streamflow record (about 30 years on either side) may be required to

characterize low-flow variability.
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1. Introduction

Streamflow variability at the scale of seasons or

years can be so great in many streams that it may be too

difficult to detect trends even over a relatively long
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period of record (Konrad and Booth, 2002). Alter-

natively, relatively short, multi-year sequences of wet

or dry years can produce statistically significant trends,

particularly when those sequences are at the start or end

of a period of record (Wahl, 1998). Thus, the question

of the number of years of record needed to detect a

trend in streamflow variability is problematic.

Although a number of studies in the US have

investigated trends in streamflow data, most have
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focused on average monthly or annual discharge with

temporal analyses of streamflow variability receiving

relatively less attention (Lins and Slack, 1999;

Sankarasubramanian and Vogel, 2002). Information

to date suggests that the period of record rec-

ommended to detect a trend in various streamflow

parameters ranges from 10 to 40 or more years. A

minimum of 10 years of record has been suggested as

necessary for defining the frequencies of low (Riggs,

1972) and high flows (Interagency Advisory Com-

mittee on Water Data, 1982). However, Konrad and

Booth (2002) in an analysis of trends in average

annual discharge and 7-day low flow in streams of

western Washington concluded that analyses using a

10-year period of record could lead to spurious

interpretations of trends. Richter et al. (1997) reported

that the ranges of streamflow parameter estimates

‘begin to narrow substantially’ when based on at least

20 years of record. Many temporal studies of stream-

flow, typically based on average or median discharge,

have been based on greater than 30 years of record

(Lettenmaier et al., 1994; Lins and Slack, 1999;

Douglas et al., 2000; McCabe and Wolock, 2002).

Gan et al. (1991), using Colwell’s indices of

predictability, constancy, and contingency (Colwell,

1974) to assess trends in streamflow, suggested that

about 40 years of record were needed to ensure stable

characterizations of streamflow. However, relatively

long periods of record may not be available for many

stream-gaging stations. Because the number of sites

available for studies related to characterization of

streamflow variability is dependent on the length of

record at each site, a better understanding is needed of

the minimum number of years required to characterize

streamflow variability and accurately detect trends,

where they exist.

Trends in streamflow variability may vary from

site to site because of environmental factors, further

complicating the question of the number of years of

record needed to detect a trend in streamflow

variability. The influence of large-scale environmen-

tal factors such as climate on streamflow trends is well

documented (Lins and Slack, 1999). Vogel et al.

(1998) reported that in the relative absence of

anthropogenic influences not only was streamflow

variability heterogeneous among major hydrologic

regions in the US, but also among many river basins.

Douglas et al. (2000) suggested that geographic
variability in trends in low and high flows might be

related to differences in drainage basin storage.

Trends in streamflow variability have also been

reported to vary with different types of streams (for

example, perennial or intermittent) and physiography

(Walker et al., 1995; Poff, 1996). Thus, to expand

inferences from individual stream-gaged sites regard-

ing the period of record needed to detect trends would

require an understanding of environmental factors that

may affect streamflow variability.

The goal of this study was to determine the

minimum number of years of record required to detect

a level shift in selected hydrological parameters used

to characterize streamflow variability, using two

statistical methods. Specifically, the following ques-

tions were addressed in this study: (1) How many

years are needed to detect a certain mean change in a

value if one occurs? (2) Are regional spatial patterns

(among watersheds) evident in the number of years

needed, such as relations with physiography or major

hydrologic regions? and (3) Are the number of years

needed related to natural environmental variables

within watersheds, such as drainage area and

elevation?
2. Streamflow data

For this study, we chose to use the frequency and

duration of high- and low-flow events to characterize

streamflow variability (Richter et al., 1996). Low-flow

and high-flow thresholds were defined as the 25th and

75th percentiles of discharge for the entire period of

continuous record, respectively. These threshold

levels were then used to determine a numerical

count of the number of low- (NL) and high-flow

(NH) events per year, with an event defined as a

period when streamflows are greater than the high-

flow threshold or less than the low-flow threshold. The

mean duration in days per year of the low- (DL) and

high-flow (DH) events was also determined. As an

illustration, Fig. 1 shows 1993 daily flows for the

Salkehatchie River near Miley, South Carolina with

the 25th and 75th flow percentiles indicated by

horizontal lines. For example, the NH for 1993

would equal five, and consist of one high flow of

long duration followed by four high flows of short

duration. These streamflow parameters (NL, NH, DL,



Fig. 1. Salkehatchie River data.
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and DH) have been described as ecologically relevant

hydrologic attributes that can be used to characterize

streamflow variability (Richter et al., 1996). Ecologi-

cal responses to altered patterns of these streamflow

parameters are numerous (Poff et al., 1997) and

include loss of riffle habitat for aquatic species,

concentration or stranding of aquatic organisms,

altered energy flows, and invasion and establishment

of exotic species.

The streamflow data set consisted of records

included as part of the Hydro-Climatic Data Network

(HCDN), a database comprised of streamflow records

from US Geological Survey stream gaging stations

located on streams considered to be relatively free of

anthropogenic influences (Slack et al., 1993). Records

from 128 stations in North Carolina, South Carolina,

and Virginia were examined. This three-state study

area provided the opportunity to limit potential

influences of broad geographic scale climatic factors

on streamflow variability (Lins and Slack, 1999)

while examining records from stations located within

four different physiographic provinces—Coastal

Plain, Piedmont, Blue Ridge, and Valley and Ridge

(Fenneman, 1946)—and two major US hydrologic

regions-the Mid-Atlantic and the South Atlantic-Gulf

(US Water Resources Council, 1975). A final set of 50

stations was chosen for inclusion in this study based
on a minimum of 14 years of continuous streamflow

record, an end-of-record date no earlier than 1985, and

a drainage area less than 1036 km2. Data for this study

thus consisted of 200 (50 sites!4 variables) different

time series. The stations ranged in elevation from 0.6

to 490.8 m and from 62.4 to 883.2 km2 in drainage

area (Table 1).

The analyses that follow involve calculation of lag-

one correlations, estimation of sample sizes, and

examination of spatial patterns in estimated sample

sizes from these records based on the longest

continuous streamflow record available at a station.

Begin and end dates of each record varied, and length

of records ranged from 14 to 71 years (Table 1).

Varying record lengths and dates do not affect the

validity of sample size determination within a station,

but they do affect precision as measured by the

standard errors. Standard error calculations of sample

size estimates are presented in Section 4.1. The

standard errors are larger for the smaller numbers of

observations.
2.1. Time series structure

Each of the 200 time series was evaluated to

determine the appropriate Autoregressive Moving

Average (ARMA) model. The first order



Table 1

Station number, physiographic province, major hydrologic region, years and period of stream flow record, 25th and 75th percentiles offlow (low-flow

and high-flow thresholds, respectively), elevation, and drainage area for 50 gaged sites from Virginia, North Carolina, and South Carolina

No. Station

number

State Physio-

graphic

province

Hydrologic

region

Years of

record

Begin

date

End date 25th %

(cm)

75th%

(cm)

Elevation

(m)

Drainage

area (km2)

1 01632000 VA VAR MA 71 Apr-25 Mar-95 0.42 5.04 320.6 543.9

2 01634500 VA VAR MA 58 Oct-37 Jul-95 0.48 2.75 197.2 266.8

3 01638480 VA PP MA 25 Oct-70 Jul-95 0.51 2.83 75.9 232.1

4 01643700 VA PP MA 29 Oct-65 Jul-95 0.62 4.48 100.3 318.6

5 01644000 VA PP MA 66 Apr-30 Jul-95 1.53 10.17 75.9 859.9

6 01646000 VA PP MA 61 Apr-35 Oct-94 0.62 1.73 46.1 149.9

7 01663500 VA PP MA 52 Aug-42 Oct-92 2.75 11.04 87.9 743.3

8 01665500 VA PP MA 53 Oct-42 Dec-94 1.27 5.04 133.9 295.3

9 01671100 VA PP MA 34 Oct-61 Oct-94 0.54 2.94 40.3 277.1

10 02015700 VA VAR MA 35 Aug-60 Sep-94 1.27 4.47 490.8 284.9

11 02017500 VA VAR MA 69 Oct-26 Jul-95 0.59 4.13 382.3 269.4

12 02020500 VA VAR MA 57 Oct-38 Oct-94 0.51 4.81 422.1 372.9

13 02027800 VA PP MA 36 Aug-60 Oct-94 1.76 5.41 135.5 380.7

14 02030500 VA PP MA 69 Apr-26 Sep-95 2.01 6.09 72.8 585.3

15 02041000 VA PP MA 49 Oct-46 Aug-95 1.02 4.11 54.0 409.2

16 02042500 VA CP MA 54 Apr-42 Aug-95 1.73 9.79 1.9 652.7

17 02044500 VA PP SAG 44 Oct-50 Aug-95 2.55 9.17 56.4 800.3

18 02046000 VA PP SAG 49 Oct-46 Aug-95 0.48 3.26 39.6 290.1

19 02052500 VA PP SAG 42 Oct-53 Aug-95 0.19 1.81 46.5 168.9

20 02053800 VA BR SAG 35 Oct-60 Jul-95 1.16 3.59 415.1 284.9

21 02061500 VA PP SAG 59 Apr-37 Jul-95 3.68 10.36 165.8 828.8

22 02065500 VA PP SAG 49 Oct-46 Aug-95 1.13 2.92 112.8 253.8

23 02069700 VA PP SAG 33 Oct-62 Jul-95 1.98 4.19 265.7 219.1

24 02070000 VA PP SAG 66 Oct-28 Aug-95 1.98 3.85 222.8 279.7

25 02082770 NC PP SAG 32 Aug-63 Sep-94 1.27 4.67 39.6 429.9

26 02082950 NC PP SAG 34 Oct-59 Sep-94 0.91 4.70 35.5 458.4

27 02083800 NC CP SAG 38 Dec-56 Sep-94 0.34 2.49 9.1 202.3

28 02088470 NC CP SAG 27 Aug-64 Oct-90 0.96 6.23 39.4 494.7

29 02091700 NC CP SAG 31 Oct-56 Sep-87 0.28 3.45 9.1 241.6

30 02092000 NC CP SAG 39 Feb-50 Sep-88 0.68 6.34 0.6 471.4

31 02092500 NC CP SAG 42 Jan-51 Sep-94 0.68 6.59 5.8 435.1

32 02106000 NC CP SAG 42 Feb-50 Sep-91 0.79 4.30 24.5 240.4

33 02112120 NC PP SAG 29 Apr-64 Sep-94 2.97 5.92 294.1 331.5

34 02112360 NC PP SAG 28 Apr-64 Sep-94 2.15 4.05 282.6 204.1

35 02113850 NC PP SAG 28 Apr-64 Sep-94 4.78 9.74 268.5 598.3

36 02108500 NC CP SAG 42 Jan-51 Sep-94 2.95 6.40 223.9 401.5

37 02129590 SC CP SAG 16 Oct-79 Sep-94 0.25 1.02 30.5 68.4

38 02131150 SC CP SAG 26 Nov-66 Sep-92 0.14 0.91 22.9 70.9

39 02131309 SC PP SAG 19 Aug-76 Sep-94 0.12 0.93 92.3 62.9

40 02135300 SC CP SAG 27 Jul-68 Sep-94 1.02 3.85 50.1 248.6

41 02143000 NC PP SAG 58 Aug-25 Sep-94 1.76 3.96 271.6 215.5

42 02143040 NC PP SAG 30 Oct-61 Sep-94 0.62 1.42 336.2 66.6

43 02149000 NC BR SAG 43 Jan-51 Sep-94 2.15 4.33 248.5 204.6

44 02152100 NC PP SAG 35 Mar-59 Sep-94 1.33 2.75 271.3 156.7

45 02153780 SC PP SAG 14 Oct-80 Sep-94 0.20 0.63 172.2 62.4

46 02157000 SC PP SAG 38 Oct-50 Sep-88 0.91 1.89 207.3 114.9

47 02175500 SC CP SAG 43 Feb-51 Sep-94 4.45 12.20 19.6 883.2

48 02176500 SC CP SAG 43 Feb-51 Sep-94 0.48 6.77 15.3 525.8

49 02197300 SC CP SAG 29 Jun-66 Sep-94 2.49 3.23 50.3 255.6

50 02197400 SC CP SAG 20 Mar-74 Sep-94 1.27 2.97 35.7 153.6

VAR, Valley and Ridge; PP, Piedmont Plateau; CP, Coastal Plain; BR, Blue Ridge; MA, Mid-Atlantic; and SAG, South Atlantic-Gulf.
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autoregressive AR(1) model appeared to fit most time

series (187 of 200) with no evidence of lack offit, based

on a c2 test on the residuals (Brocklebank and Dickey,

2003). Higher order models were indicated for 13 of

the time series. However, for these time series the

AR(1) captured nearly all of the correlation structure so

the AR(1) model was used for all 200 time series. Lins

(1985) and Vogel et al. (1998) also reported that

streamflow variability time series were adequately

described by an AR(1) model. Next, each time series

was examined for possible linear trends. For most time

series (183 of 200), the linear trend was insignificant

(PO0.05). The four series from a typical stream are

shown in Fig. 2 and those from one of the worst (P!
0.05 for NH and DH) in Fig. 3. Even there, the trends

did not seem dramatic and no detrending was done.

Numerous studies of streamflow series have used

the approach developed by Hurst (1951) to examine
Fig. 2. NL, DL, NH, and DH
the long-term stochastic structure of streamflow.

However, there is considerable debate regarding the

validity and meaning of Hurst coefficients. Vogel et al.

(1998) suggested that it is impossible to use these

coefficients to infer long-range dependence of time

series. The AR(1) model YtKmZr(YtK1Km)Cet is

considered stationary if jrj!1. Estimates of jrj for the

four parameters ranged from 0 to 0.8 (Table 2). The

mean jrj for all 50 stations was 0.17 for NL, 0.20 for

DL, 0.18 for NH and 0.14 for DH. Dickey and Fuller

(1979, 1981) develop a test of the hypothesis rZ1, and

rejection in favor of r!1 is taken as evidence of

stationarity. Using this, all of our series are found to be

stationary. Vogel et al. (1998) examined streamflow

variability using the HCDN and reported a mean jrj

regional value for the coefficient of variation of annual

streamflow calculated for 18 hydrologic regions in

United States of 0.22.
for a typical stream.



Fig. 3. NL, DL, NH, and DH for an atypical stream.
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Whereas some studies have indicated that trends

and non-stationarity exist in annual streamflow (e.g.

Lins, 1985; Lettenmaier et al., 1994), it may not be

surprising that the present study suggests stationary

series for the parameters examined. First, the

parameters in question are not annual streamflows,

but rather exceedances. Also, the data were derived

from a set of records for stations located on relatively

small-sized streams in the eastern United States.
3. Sample sizes for detecting a level shift

To address the question, ‘how many samples are

needed to detect a certain mean change in a value if

one occurs?’ requires explanation of how one can

detect level shifts in an otherwise stationary series.

Studies of long-term changes in hydrologic variables
can be conducted by comparing two non-overlapping

sets of data representing different time periods. The

mean value of a given hydrologic variable Y can step

up or down between time periods and such changes

are thus known as step trends (Helsel and Hirsch,

1992) or level shifts. We consider level shifts that take

place when a known event has occurred at a specific

time in the streamflow record, for example, as a result

of anthropogenic influences such as dam construction

or a diversion, or natural factors such as climate shifts

(McCabe and Wolock, 2002). The record is divided

into time periods before and after this event. A two-

sample t-test, accounting for autocorrelation, is

conducted to compare means and the size of the

level shift is determined.

In this study, stations were selected specifically

because they did not have any known events that

may have changed hydrologic variables over time.



Table 2

Estimates of the lag 1 autoregressive coefficient r for each station and target parameter

Station

number

NL DL NH DH Station

number

NL DL NH DH

01632000 0.17 0.21 K0.22 K0.08 02082950 0.08 0.21 K0.15 K0.08

01634500 0.04 0.21 0.03 0.03 02083800 K0.02 0.08 0.11 K0.11

01638480 K0.03 0.10 0.16 0.13 02088470 K0.07 K0.39 0.01 K0.22

01643700 K0.19 0.01 0.06 K0.05 02091700 0.26 0.51 0.19 K0.16

01644000 0.16 0.02 0.15 K0.02 02092000 0.08 0.41 0.11 0.16

01646000 0.22 K0.01 0.40 0.09 02092500 0.01 0.14 0.19 K0.18

01663500 0.00 0.22 0.13 0.15 02106000 0.04 0.07 0.37 K0.12

01665500 0.01 0.07 0.05 0.12 02112120 0.27 0.24 0.17 0.23

01671100 0.26 0.16 0.08 0.19 02112360 0.33 0.16 0.22 0.30

02015700 0.23 0.71 0.16 0.26 02113850 0.11 K0.11 0.14 0.24

02017500 0.16 0.14 K0.28 0.33 02118500 0.25 0.24 0.10 0.17

02020500 K0.04 0.11 K0.10 K0.04 02129590 0.12 K0.36 K0.67 K0.19

02027800 0.29 0.30 K0.08 K0.01 02131150 0.07 K0.10 K0.40 0.08

02030500 0.32 0.21 0.10 0.23 02131309 K0.03 K0.38 0.59 K0.29

02041000 0.19 0.04 0.31 0.05 02135300 0.18 0.07 K0.32 K0.31

02042500 0.11 0.16 0.19 K0.01 02143000 0.41 0.41 0.10 0.01

02044500 0.21 K0.04 0.08 K0.06 02143040 K0.08 0.09 K0.02 K0.14

02046000 K0.10 0.04 0.05 K0.09 02149000 K0.10 0.16 0.08 0.06

02052500 K0.06 0.09 K0.10 K0.06 02152100 0.20 0.06 K0.14 K0.08

02053800 K0.05 0.09 0.09 0.17 02153780 0.12 0.41 K0.58 K0.25

02061500 0.18 0.18 K0.03 K0.04 02157000 0.28 0.17 0.37 0.21

02065500 0.50 0.45 0.06 0.21 02175500 0.30 0.12 0.14 0.08

02069700 0.25 0.35 0.24 0.24 02176500 0.18 0.07 K0.18 K0.05

02070000 0.33 0.14 K0.02 K0.03 02197300 0.80 0.58 0.12 0.39

02082770 K0.06 K0.03 0.04 0.15 02197400 0.11 0.11 0.30 0.08

NL, number of low-flow exceedences; DL, duration of low-flow exceedences; NH, number of high-flow exceedences; and DH, duration of high-

flow exceedences.

S. Huh et al. / Journal of Hydrology 310 (2005) 78–9484
These data thus provide baseline information on

streams in relatively undisturbed states from which

departures can be evaluated. Assuming that the

variance and autocorrelation structure would not be

affected by a level shift if it occurred, and given an

experimental shift magnitude of interest and desired

detection probability, the number of years necessary

to detect a hypothetical level shift can be determined.

Thus, the necessary sample size to detect a level shift

of size d with probability 1Kb, can be determined for

given values of d and b. This is the problem of finding

the sample size for which the hypothesis test of

H0:dZ0 has power 1Kb at a significance level a.

To solve this problem, two statistical approaches

can be considered. In Section 3.1, an easy-to-use

method using ordinary least squares (OLS) theory is

presented. This method assumes a known error

variance s2. In Section 3.2, a fancier approach is

presented using generalized least squares (GLS)

without assuming s2 is known.
Besides these two approaches, we may also

consider a non-parametric approach. This is a

frequency domain method for which identification

of the autocorrelation structure is not needed. For

more details about using the frequency domain

method, see Huh (2000).

Each method here considers a stationary AR(1)

model that has a shift of size d in level, and is based on

the assumption that the shift occurs exactly at the

midpoint of the data. This model can be represented as

Yt Z b0 CdXt CUt

Ut Z rUtK1 Cet jrj!1; t Z 1;.; 2n
(1)

where XtZ(0,.,0,1,.,1) 0, etwNI(0,s2), U1wN(0,

(s2/1Kr2)), U1 and et’s (tO1) are independent, and b0

is the level before the shift. It is not possible to catalog

the effect of every possible change in a time series.

We are simply assuming that the subseries, before and

after the shift, differ only in their means, not in their
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covariance structures. This assumption that the

variance and autocorrelation are the same before

and after the break is common in time series analysis.

Should the variance increase after the shift, the

required sample sizes would increase. Likewise a

shift in the exact middle of a series would be easier to

detect statistically than one near either end so again

this assumptions delivers conservative estimates of

sample size. The assumption of a sudden level shift

rather than some more subtle and harder to detect

change also produces conservative estimates of

required sample sizes.

As to the assumption of a given level shift, this is

necessary in any kind of power calculation. The

power, or ability to detect a shift, must depend on the

magnitude of the shift much as the detection of an

earthquake would depend on its magnitude. We have

simply computed the sample size necessary when a

specified shift amount and desired detection prob-

ability are given. Knowledge of the shift magnitude is

not a requirement for doing the test, but rather is used

only in power computations.

3.1. Method I: ordinary least squares (OLS)

Because it is simple and well known, we first

consider the ordinary least squares (OLS) approach. It

is theoretically less efficient than generalized least

squares for Model (1) since the Ut’s are autocorre-

lated, however, the difference is minor for these data.

The simple OLS estimator of d is the difference of

two means, d̂Z �Y2K �Y1, where �Y1 Z 1
n

Pn
tZ1 Yt and

�Y2Z 1
n

P2n
tZnC1 Yt. A proper test statistic for testing

H0:dZ0 is given as

�Y2 K �Y1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð �Y2 K �Y1Þ

p :

Thus, the per-group sample size n (2n total

observations) that satisfies

P
�Y2 K �Y1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varð �Y2 K �Y1Þ
p OZa

 !
Z 1 Kb (2)

can be determined, where Za is the standard Normal

percentage point at a significance level a and b is a

type II error probability. For independent data, the

formula for n is well known. We consider modifi-

cations necessary with autocorrelated data.
First, Varð �Y2K �Y1Þ is determined. Letting g(h)

denote the covariance between Ut and UtCh, Varð �Y2K
�Y1Þ can be written as

Varð �Y2 K �Y1Þ Z Varð �U2 K �U1Þ Z nK2c0Gc

where c is a column of 1s and K1s and G is a matrix

with (i,j)th element [G]ijZg(iKj).

For model (1), Varð �Y2 K �Y1Þ can be written as

Varð �Y2 K �Y1Þ

Z
2gð0Þ

n2ð1 KrÞ2
½ð1 Kr2Þn K3r C4rnC1 Kr2nC1�

Z
2gð0Þ

n

1 Cr

1 Kr

� �
COðnK2Þ:

The power under Ha:dO0 for the one-sided test is

1Kb ZP
�Y2 K �Y1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varð �Y2 K �Y1Þ
p OZa

 !

ZP
�Y2 K �Y1 Kdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varð �Y2 K �Y1Þ

p OZa K
dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varð �Y2 K �Y1Þ
p !

ZP ZOZa K
dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varð �Y2 K �Y1Þ
p !

:

The values g(0) and r are assumed to be known

and thus Varð �Y2K �Y1Þ is known. Therefore, to find the

sample size that satisfies Eq. (2), the following

equation is solved for n,

Za K
dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varð �Y2 K �Y1Þ
p ZZ1Kb ZKZb

which becomes

Varð �Y2 K �Y1ÞZ
d

Za CZb

� �2

:

For a two-sided test with Ha:ds0, Za is replaced

by Za/2 obtaining

2gð0Þ

n2ð1KrÞ2
½ð1Kr2ÞnK3rC4rnC1 Kr2nC1�

Z
d

Za=2 CZb

� �2

(3)
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Letting dZks and noting that gð0ÞZs2=ð1Kr2Þ

for the AR(1) model gives

2

n2ð1KrÞ2ð1Kr2Þ
½ð1Kr2ÞnK3rC4rnC1 Kr2nC1�

Z
k

Za=2 CZb

� �2

hV : ð4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 Kr2

p
Y1

Y2 KrY1

«

Yn KrYnK1

YnC1 KrYn

YnC2 KrYnC1

«

Y2n KrY2nK1

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 Kr2

p
b0

ð1 KrÞb0

«

ð1 KrÞb0

ð1 KrÞb0 Cd

ð1 KrÞb0 C ð1 KrÞd

«

ð1 KrÞb0 C ð1 KrÞd

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
C

ffiffiffiffi
1 K

p

e

e

0BBBBBBBBBBBBB@
The sample estimates ĝð0Þ and r̂ can be substituted

for the parameters g(0) and r. Eqs. (3) or (4) can then

be solved for n using a search technique.

The terms rnC1 and r2nC1 are small for jrj!1.

Ignoring these, Eq. (4) reduces to a quadratic equation

for n, namely

Vð1 KrÞ2ð1 Kr2Þn2 K2ð1 Kr2Þn C6r Z 0:

Solving for n,

n Z
ð1 CrÞC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 CrÞ2 K6Vrð1 Kr2Þ

p
Vð1 KrÞð1 Kr2Þ

: (5)

Eq. (5) should provide a good approximation of n

without further adjustment if r is not too large.
3.2. Method II: generalized least squares (GLS)

In Section 3.1, we used a difference of two

means adjusting the standard error for autocorrela-

tion. We now consider a theoretically superior

approach which is called generalized least squares

(GLS). Here, the improvement is slight due to our

small values of r.

In this section, GLS is implemented through the so-

called ‘Cochrane–Orcutt’ transformation (Dinardo

et al., 1996). Using GLS, the non-centrality parameter
of the test statistic for testing H0:dZ0 is a function of

the sample size n. Because the non-centrality

parameter determines power, the sample size n can

be determined once the desired value of the power is

given.

Using Cochrane–Orcutt, the transformed model in

matrix form is

ffiffiffiffiffiffiffiffiffi
r2U1

e2

«

en

nC1

nC2

«

e2n

1CCCCCCCCCCCCCA
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 Kr2

p
0

1 Kr 0

« «

1 Kr 0

1 Kr 1

1 Kr 1 Kr

« «

1 Kr 1 Kr

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA

b0

d

 !
C3:

This model is of the form

Z Z Xb C3 (6)

where 3wN(0, Is2) since
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kr2

p
U1 wNð0;s2Þ and

U1 is independent of the et’s for tO1.

Now Model (6) satisfies the usual regression

assumption that the error terms are independent and

identically distributed as Normal random variables

with mean zero and variance s2. The hypothesis

H0:dZ0 can then be tested and the sample size that

gives power 1Kb at significance level a can be

determined. Note that the GLS estimate d̂G is not

exactly the same as the OLS estimate �Y2K �Y1 but

is asymptotically equivalent for jrj!1. For small r

as in our data, they are nearly equal in finite

samples.

The test statistic for the hypothesis H0:dZ0 can be

shown as

F Z
d̂

2
G=c11

MSE
:

where c11 is the (2,2)th element of (X 0X)K1 and MSE

is the error mean square (Rawlings et al., 1998). See

the Appendix A for details of the derivation. This has

a non-central F distribution with 1 and 2nK2 degrees
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of freedom, and non-centrality parameter

l Z
k2fð1 KrÞ2n Krðr K3Þg

4

for dZks.

Under the hypothesis H0:dZ0, the test statistic F is

distributed as the central F distribution with 1 and

2nK2 degrees of freedom. Using Fa, the critical value

from the central F distribution at level a, the power

for a certain d is the probability that the non-central F

exceeds Fa. Having found l that delivers the desired

power, the n that gives this value of l can be

computed. The power is a function of l and thus in

theory, of k, n and r. These theoretical power values

are provided in Table 3. For any given value of r,

power increases as n increases. For a fixed n, power

decreases as r increases. Fig. 4 presents theoretical

powers for some values of n and r with kZ1.
Table 3

Theoretical power values for r (ranging from K0.4 to 0.5), n (5, 10,

20, 30, 40 and 50), and kZ1 using Method II

r n Power r n Power

K0.4 5 0.4396 0.1 5 0.2552

K0.4 10 0.8148 0.1 10 0.4915

K0.4 20 0.9886 0.1 20 0.7990

K0.4 30 0.9995 0.1 30 0.9316

K0.4 40 1.0000 0.1 40 0.9790

K0.4 50 1.0000 0.1 50 0.9940

K0.3 5 0.3978 0.2 5 0.2275

K0.3 10 0.7604 0.2 10 0.4232

K0.3 20 0.9765 0.2 20 0.7119

K0.3 30 0.9984 0.2 30 0.8709

K0.3 40 0.9999 0.2 40 0.9465

K0.3 50 1.0000 0.2 50 0.9791

K0.2 5 0.3580 0.3 5 0.2036

K0.2 10 0.6989 0.3 10 0.3595

K0.2 20 0.9551 0.3 20 0.6121

K0.2 30 0.9950 0.3 30 0.7818

K0.2 40 0.9995 0.3 40 0.8840

K0.2 50 1.0000 0.3 50 0.9409

K0.1 5 0.3207 0.4 5 0.1835

K0.1 10 0.6320 0.4 10 0.3027

K0.1 20 0.9204 0.4 20 0.5074

K0.1 30 0.9865 0.4 30 0.6674

K0.1 40 0.9980 0.4 40 0.7835

K0.1 50 0.9997 0.4 50 0.8633

0 5 0.2863 0.5 5 0.1672

0 10 0.5620 0.5 10 0.2542

0 20 0.8690 0.5 20 0.4065

0 30 0.9677 0.5 30 0.5387

0 40 0.9930 0.5 40 0.6489

0 50 0.9986 0.5 50 0.7377
4. Sample size estimates

Using Method I, the necessary per-group sample

size n to detect a shift d for a certain power 1Kb at

significance level a can be obtained by using Eq. (5)

when dZks. Recall there are n observations on either

side of the break. Sample sizes n calculated using

Method I, where kZ1 and bZ0.2, ranged from 9

years for NH to 368 years for NL (Table 4). Mean per-

group sample sizes are nZ29.7, 27.6, 21.2 and 18.9

years for NL, DL, NH and DH, respectively. Mean

values are 28.6 years for measures of low-flow

variability (NL and DL combined) and 20.0 years

for measures of high-flow variability (NH and DH

combined). From Method II, the necessary per-group

sample size n to detect a level shift of size dZks,

where kZ1 and bZ0.2 ranged from 8 years for NH to

334 years for NL (Table 5). Mean sample sizes are

nZ29.7, 27.9, 21.9 and 19.7 years for NL, DL, NH

and DH, respectively. Mean values are 28.8 years for

measures of low-flow variability (NL and DL

combined) and 20.8 years for measures of high-flow

variability (NH and DH combined). For either

method, the estimate r̂ is used as if it is the fixed

parameter r. Using a non-parametric approach, the

necessary sample size for dZ3, from Huh (2000),

ranged from 10 years for NL, NH, and DH, to 520

years for DL.

It is seen from the tables that estimated per-group

sample sizes required are very similar for most cases

between OLS and GLS. Examined more closely, the

estimates for GLS are slightly higher than those for

OLS, which seems to contradict the superiority of

GLS. The explanation for this is that the admission

that s2 is unknown overwhelms the minor improve-

ment in the estimation scheme. Since s2 would never

be known in practice, we feel that sample sizes

associated with GLS are more realistic and would

recommend these if forced to choose between the two,

almost identical, tables of sample sizes. We use the

simpler OLS determined sample sizes in our later

analyses, anticipating that users would prefer these.

Analyses reported have been repeated with the GLS

sample sizes, showing no substantial differences from

the reported results. In performing a test for step

change, one may as well use the simpler OLS

tests regardless of how sample size was calculated,



Fig. 4. Theoretical Powers for some values of n and r with kZ1.

S. Huh et al. / Journal of Hydrology 310 (2005) 78–9488
since the improvement associated with GLS appears

so minor for the small r values we have here.

To determine sample sizes for each parameter

across the entire data set of stations, a value r̂0 was

used as a common estimate for all 50 stations. It was

derived from the weighted average of the 50

individual estimates of r̂. The number of observations

in each station was used as the weighting factor and so

r̂0 Z

P50
jZ1 Tjr̂jP50

jZ1 Tj

where Tj is the number of observations and r̂j is the

autocorrelation estimate for each station j.

First, the hypothesis H0:rjZr0 is tested, where rj is

the lag 1 autocorrelation for station j and r0 is a fixed

value of r. In the AR(1) model, if jrj!1,ffiffiffiffi
T

p
ðr̂ KrÞ 



/

L
Nð0; 1 Kr2Þ as T /N (7)

or

r̂eAN r;
1 Kr2

T

� �
where AN stands for Asymptotic Normal and T is the

number of observations in a time series. Therefore,
under H0:rjZr0 for jZ1,.,50,

r̂j Kr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 Kr2

0Þ=Tj

q (8)

is approximately distributed as N(0,1) and soX50

jZ1

ðr̂j Kr0Þ
2

ð1 Kr2
0Þ=Tj

is approximately distributed as c2
50. A weighted

average r̂0 was used instead of r0 in Eq. (8), to

determine if

Ẑj h
r̂j K r̂0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 K r̂2

0Þ=Tj

q
is N(0,1) for jZ1,.,50 or

Ĥ h
X50

jZ1

ðr̂j K r̂0Þ
2

ð1 K r̂2
0Þ=Tj

is distributed as c2
49, where the degrees of freedom

number is adjusted due to the constraintP50
jZ1 Tjðr̂jK r̂0ÞZ0. Values for rj were not

significantly different from r̂0 using the test statistic

Ĥ for each target variable (P-valueZ0.63, 0.29, 0.05



Table 4

Sample sizes n (years of streamflow record) necessary for detecting a level shift (kZ1, bZ0.2, Method I) and standard errors in parentheses

Station

Number

nNL nDL nNH nDH Station

number

nNL nDL nNH nDH

01632000 23 (6.54) 25 (7.56) 12 (2.06) 14 (2.95) 02082950 19 (6.94) 25 (10.6) 13 (3.52) 14 (4.28)

01634500 18 (4.75) 25 (8.14) 17 (4.59) 17 (4.59) 02083800 16 (4.8) 19 (6.71) 20 (7.16) 14 (3.74)

01638480 15 (6.03) 19 (8.83) 22 (10.72) 21 (9.8) 02088470 15 (5.17) 10 (2.18) 16 (6.38) 12 (3.35)

01643700 12 (3.68) 17 (6.51) 18 (7.43) 15 (5.49) 02091700 28 (13.41) 64 (41.53) 24 (10.6) 13 (3.6)

01644000 22 (6.53) 17 (4.22) 22 (6.38) 16 (3.66) 02092000 19 (6.54) 44 (22.33) 20 (7.26) 22 (8.5)

01646000 26 (8.51) 16 (3.94) 43 (17.5) 19 (5.35) 02092500 16 (5.05) 21 (7.58) 24 (8.91) 12 (2.94)

01663500 16 (4.48) 26 (9.12) 21 (6.69) 22 (7.25) 02106000 17 (5.52) 18 (6.09) 39 (18.48) 13 (3.49)

01665500 16 (4.44) 18 (5.37) 18 (5.0) 20 (6.34) 02112120 29 (15.16) 27 (13.59) 23 (10.28) 26 (12.87)

01671100 29 (13.26) 22 (8.96) 19 (6.95) 24 (10.07) 02112360 34 (18.85) 22 (9.99) 26 (12.45) 31 (16.7)

02015700 26 (11.29) 185 (158.1) 22 (9.02) 28 (12.65) 02113850 20 (8.41) 13 (4.33) 21 (9.35) 27 (13.54)

02017500 22 (6.36) 21 (5.95) 11 (1.76) 34 (11.99) 02118500 27 (11.11) 27 (10.98) 19 (6.61) 23 (8.38)

02020500 15 (3.73) 20 (5.9) 14 (3.13) 15 (3.71) 02129590 21 (11.94) 10 (2.98) 9 (1.28) 12 (4.71)

02027800 31 (14.58) 31 (14.76) 14 (4.21) 16 (5.26) 02131150 18 (7.76) 14 (4.69) 10 (2.12) 19 (8.15)

02030500 33 (11.44) 25 (7.58) 19 (5.16) 27 (8.32) 02131309 15 (6.68) 10 (2.6) 93 (89.49) 11 (3.29)

02041000 24 (8.35) 17 (5.06) 33 (13.26) 18 (5.22) 02135300 23 (11.07) 19 (7.68) 11 (2.55) 11 (2.61)

02042500 20 (6.12) 22 (7.17) 24 (8.09) 16 (4.26) 02143000 44 (18.51) 43 (18.4) 19 (5.71) 16 (4.32)

02044500 25 (9.39) 15 (4.26) 19 (6.09) 15 (3.98) 02143040 14 (4.69) 19 (7.93) 16 (5.54) 13 (3.99)

02046000 14 (3.37) 17 (5.15) 18 (5.33) 14 (3.44) 02149000 14 (3.67) 22 (8.17) 19 (6.17) 18 (5.81)

02052500 15 (4.16) 19 (6.45) 14 (3.7) 15 (4.09) 02152100 24 (10.33) 18 (6.49) 13 (3.6) 14 (4.23)

02053800 15 (4.64) 19 (7.1) 19 (7.18) 23 (9.32) 02153780 20 (12.03) 44 (37.59) 9 (1.73) 11 (4.21)

02061500 23 (7.29) 23 (7.47) 15 (3.82) 15 (3.75) 02157000 30 (13.19) 23 (8.91) 39 (18.85) 25 (9.98)

02065500 60 (30.81) 50 (24.16) 18 (5.53) 25 (9.05) 02175500 31 (13.28) 20 (7.03) 21 (7.66) 19 (6.2)

02069700 27 (12.68) 37 (19.26) 27 (12.3) 27 (12.2) 02176500 24 (8.78) 18 (5.99) 12 (2.93) 15 (4.14)

02070000 35 (12.35) 21 (6.06) 16 (3.62) 15 (3.6) 02197300 368 (418.66) 87 (64.98) 21 (8.78) 41 (23.72)

02082770 15 (4.73) 15 (5.19) 17 (6.36) 22 (8.97) 02197400 20 (10.18) 20 (10.1) 31 (19.79) 19 (9.22)

NL, number of low-flow exceedences; DL, duration of low-flow exceedences; NH, number of high-flow exceedences; and DH, duration of high-

flow exceedences.
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and 0.81 for NL, DL, NH and DH, respectively). In

addition, the Kolmogorov test (SAS Institute Inc,

1989) was used with r̂0 in place of r0, and the

hypothesis that the values for these Ẑj’s are N(0,1) is

not rejected. There does not appear to be any evidence

against using the common r̂0 for generating sample

sizes.

The weighted averages of r̂’s with Tj’s as weights,

for the four target variables were r̂0Z f0:14902;

0:15083; 0:055525; 0:043875g for NL, DL, NH and

DH, respectively. Using these r̂0 values in Eq. (5),

Method I yields a set of per-group sample sizes n

corresponding to NL, DL, NH and DH, respectively of

22, 22, 18, and 18 years for kZ1. By using Method II

for kZ1, the set of sample sizes is nZ23, 23, 19, and

19 years for NL, DL, NH and DH, respectively.

If r is ignored (as if rZ0) then the necessary per-

group sample sizes are 16 and 17 in Method I and II,

respectively, regardless of the parameters (NL, DL,
NH and DH). That is, if rZ0, the sample sizes for all

parameters (NL, DL, NH and DH) are equal since the

difference comes from the values of r.

If we also assume unknown s2 in Method I, and use

the t distribution instead of the Normal distribution,

we have slightly different results. Under the same

assumption, unknown s2, the superiority of GLS to

OLS is seen. In this new OLS table (not shown), the

sample sizes required by OLS equal or exceed those

of GLS but with few exceptions, the differences are

very small. The only substantial differences from GLS

are in stations with large r values (nDL of Station

02015700, nNL and nDL of Station 02197300) as might

be expected. In summary, all methods investigated

lead to very similar sample size results.

It is worth mentioning that the theoretical super-

iority of GLS over OLS is proved assuming that r is

known. Although the correct standard error for the

OLS estimator involves r, the estimate itself



Table 5

Sample sizes n (years of streamflow record) necessary for detecting a level shift (kZ1, bZ0.2, Method II)

Station

number

nNL nDL nNH nDH Station

number

nNL nDL nNH nDH

01632000 24 26 13 15 02082950 20 26 14 15

01634500 19 26 18 18 02083800 17 20 21 14

01638480 16 20 23 22 02088470 15 10 17 12

01643700 13 18 19 16 02091700 29 62 25 14

01644000 23 18 23 17 02092000 20 43 21 23

01646000 27 17 43 20 02092500 17 22 24 13

01663500 17 26 22 23 02106000 18 19 39 14

01665500 17 19 19 21 02112120 30 29 23 27

01671100 29 23 20 25 02112360 34 23 26 32

02015700 27 171 23 29 02113850 21 14 22 28

02017500 23 22 12 35 02118500 28 28 20 24

02020500 16 21 15 16 02129590 21 11 8 13

02027800 31 32 15 17 02131150 19 15 10 20

02030500 33 26 20 27 02131309 16 10 89 11

02041000 25 18 33 19 02135300 24 20 11 11

02042500 21 23 25 17 02143000 43 43 20 17

02044500 26 16 20 16 02143040 16 20 17 14

02046000 15 18 19 15 02149000 15 23 20 19

02052500 16 20 15 16 02152100 25 19 14 15

02053800 16 20 20 24 02153780 21 44 9 12

02061500 24 24 16 16 02157000 30 24 39 26

02065500 59 49 19 26 02175500 32 21 22 20

02069700 28 37 28 27 02176500 24 19 13 16

02070000 35 22 17 16 02197300 334 82 22 41

02082770 16 16 18 23 02197400 21 21 32 20

NL, number of low-flow exceedences; DL, duration of low-flow exceedences; NH, number of high-flow exceedences; and DH, duration of high-

flow exceedences.
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(difference of two simple averages) does not. This is

in contrast to GLS, where the uncertainty in the

estimate of r affects the estimated shift in mean as

well as its standard error. This, along with the added

complexity of running GLS and the relatively small

improvement, even in theory, provided by GLS when

r is small lead us to recommend OLS, the simple

difference of two averages, with the appropriately

adjusted standard errors.

The t test is approximately normal for reasonably

large sample sizes regardless of the distribution of the

original data, according to the central limit theorem.

The time series results we use here are similarly based

on large sample theory and do not require normality of

the data. The sample sizes found here, in the

neighborhood of 30, and autocorrelations well within

the stationarity region should make the normal

approximation reasonable. We note that Pekarova

et al. (2003), using other methods, find similar sample

size requirements for annual discharge series.
The choice of a one standard deviation shift is

arbitrary. It is easy to use formulas (4) and (5) to

investigate other k values. Over the range kZ0.1 to 1

and using autocorrelation 0.15, the required sample

sizes are between 35.5 and 38.5 percent higher than

those for uncorrelated series. Thus a rule of thumb

40% increase for NL and DL due to their autocorrela-

tions might be used. From formula (5), the required

sample size on either side of the break is 87 for kZ
1/2, for example, so detecting smaller changes for NL

and DL can require much larger sample sizes. A 10%

increase in n over that required for independent data

seems a good rule of thumb for NH and DH based on

their average autocorrelations.

4.1. Measure of accuracy

To gain further insight into the accuracy of the

sample sizes obtained above, a standard linearization

technique was used for Method I. From the dominant
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terms in Eq. (4),

n Z
2

Vð1 KrÞ2
hhðrÞ:

By Taylor series approximation,

n̂ Z hðr̂Þ Z hðrÞCh0ðrÞðr̂ KrÞCR

where R is an appropriate remainder term and

h0ðrÞ Z
4

Vð1 KrÞ3
:

Assuming R approximates 0,

n̂ Kn Z h0ðrÞðr̂ KrÞ:

Therefore, by Eq. (7),

Varðn̂Þ Z ½h0ðrÞ�2 Varðr̂Þ Z
4

Vð1 KrÞ3

� �2 1 Kr2

T

and so

standard errorðn̂Þ Z
4

Vð1 KrÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 Kr2

p ffiffiffiffi
T

p

Z
4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 Kr2

p
ðZa=2 CZbÞ

2

ð1 KrÞ3k2

1ffiffiffiffi
T

p :

That is, the standard error of n̂ is inversely

proportional to the square root of T for given k and

r. The standard error of n̂ for each station and target

variable was then calculated and ranged from 1.28

(nNH of station 02129590) to 418.66 (nNL of station

02197300) for sample size estimates provided in

Table 4. Table 4 shows the standard errors in

parentheses. For aZ0.05, bZ0.2 and the maximum

r̂0ðZ0:151Þ, standard errorðn̂ÞZ50:175=ð
ffiffiffiffi
T

p
k2Þ. Fur-

thermore,

standard errorðn̂Þ

n̂

Z
ð1 CrÞ

ð1 CrÞC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 CrÞ2 K6Vrð1 Kr2Þ

p 4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 Kr2

p
ð1 KrÞ

ffiffiffiffi
T

p

and standard error ðn̂Þ=n̂ varied between 0.157 (nNH of

station 02129590) and 1.139 (nNL of station

02197300) for sample size estimates provided in

Table 4. Thus, the standard errors of n̂ should be

between 15.7 and 113.9% of n̂.
As for the sample size estimates obtained from

Method II, we cannot apply the linearization tech-

nique as above since there is no explicit formula for n.

However, we can still get an approximate confidence

interval for n.

If a 95% confidence interval for r is given as

r̂L%r% r̂U , then the corresponding 95% confidence

interval for the power can be obtained for a fixed n

using powers in Table 3. Furthermore, a 95%

confidence interval for a sample size n ðn̂L %n% n̂UÞ

can also be obtained for a fixed power. For example,

suppose a 95% confidence interval for r is (0.3,0.4).

Then for nZ20 years before and after the break, a

95% confidence interval for the power is (0.5074,

0.6121) and, for power 0.8, a 95% confidence interval

for n is available by an interpolation.
5. Sample sizes and watershed variables

Regression analysis was conducted to evaluate

relations between sample sizes, using Method I, for

each parameter (NL, DL, NH, and DH) and watershed

variables such as elevation and drainage area. For

varying values of d or k, the P-values for the model F-

test ranged from 0.08 to 0.78 and thus none were

significant at aZ0.05. Therefore, there was no

significant evidence to suggest that elevation or

drainage area were related to the sample sizes for

these stations. The same conclusion is reached if

Method II sample sizes are used.
6. Sample sizes and geographic patterns

A cluster analysis of sample size estimates was

conducted to assess patterns that might be associated

with patterns in geographic locations of stations. The

analysis was conducted using a single linkage

technique based on vectors of the four sample sizes

(for NL, DL, NH, and DH) calculated using Method I

in Section 4. Because cluster analysis is a hierarchical

procedure that continues until only one cluster is left,

maximization of the ‘Cubic Clustering Criterion’

(CCC) (SAS Institute Inc., 1989) was used to

determine the appropriate number of clusters to be

examined. Patterns in descriptive statistics or sample

sizes did not appear to reflect patterns related to
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physiographic provinces or hydrologic regions. How-

ever, caution must be used in interpreting clustering

results since the standard errors of sample size

estimates are different among the stations as shown

in Section 4.1. The same conclusion is reached if

Method II sample sizes are used.
7. Conclusions

This study has attempted to determine the

minimum number of years of record required to

detect level shifts in four selected hydrological

parameters used to characterize streamflow variabil-

ity, using two statistical methods. The parameters

selected, the number and duration of exceedences of

high- and low-flow thresholds, have been considered

to be more ecosystem-relevant than many traditional

hydrological parameters (Richter et al., 1996).

Temporal analyses of other hydrological parameters

may yield different results.

A database of daily streamflows from stations

relatively free of anthropogenic impacts was exam-

ined and 50 gaging stations in Virginia, North

Carolina, and South Carolina were selected. The

AR(1) model was found to fit well for the majority of

series and linear trends did not appear to exist in most

cases. All series were determined to be stationary by

the Dickey–Fuller test.

The problem of finding the minimum number of

years of streamflow record (sample size) needed to

detect a level shift in a stationary series is discussed

through two different approaches—ordinary least

squares assuming a known error variance and

generalized least squares without a known error

variance. Measures of accuracy for the sample size

estimates are determined and found to be inversely

proportional to the square root of the number of

observations.

Ordinary least squares with appropriately adjusted

standard errors seems to be the most appealing of the

methods tried for testing for a step change, based on

its simplicity and the similarity of results to those of

the theoretically superior GLS. We have illustrated

results from OLS here, but results from GLS are

substantially the same. The mean sample size

estimates determined by generalized least squares

were 57.6 years (28.8 before and 28.8 after the break)
for measures of low-flow variability (number and

duration of low-flow exceedences combined) and 2!
20.8Z41.6 years for measures of high-flow varia-

bility (number and duration of high-flow exceedences

combined). These means become 57.2 and 40.0 when

OLS is used.

A cluster analysis was conducted to obtain clusters

based on the sample sizes. Based on this analysis,

there was no evidence of geographic patterns in the

number of years related to physiography or major

hydrologic regions. Regression analyses also did not

detect any significant relations between number of

years and elevation or drainage area.

These results have important implications for

studies attempting to characterize streamflow varia-

bility. The number of sites available for future studies

related to the characterization of streamflow varia-

bility is dependent on the length of streamflow record

available at each site. Whereas at least 40 years of

streamflow record may be necessary to adequately

characterize high-flow variability for the stations

examined in this study, a longer streamflow record

(about 60 years) may be required to characterize low-

flow variability.
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Appendix A

In the theory of testing, the general linear

hypothesis, the sum of squares for the linear

hypothesis H0:K 0bZm is QZ ðK 0b̂KmÞ0½K 0ðX 0XÞK1

K�K1ðK 0b̂KmÞ. Furthermore, a proper test statistic for

H0:K 0bZm is

F Z
Q=rðK 0Þ

MSE

where r is the rank of a matrix (K 0) and MSE is the

error mean square (Rawlings et al., 1998). Note that

the test statistic F is obtained without assuming that s2

is known.
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Thus,

K 0 Z ð 0 1 Þ; b Z
b0

d

 !
and

m Z 0

so r(K 0)Z1 and QZ d̂
2
G=c11, where c11 is the (2,2)th

element of (X 0X)K1.

The test statistic for the hypothesis H0:dZ0,

therefore, becomes

F Z
d̂

2
G=c11

MSE
:

This has a non-central F distribution with 1 and

2nK2 degrees of freedom and non-centrality par-

ameter

l Z
d2

2c11s2
Z

k2

2c11

where dZks. By algebra,

c11 Z
2

ð1 KrÞ2n Krðr K3Þ

and so

l Z
k2fð1 KrÞ2n Krðr K3Þg

4
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